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Abstract— We consider the classical problem of waveguide

step discontinuities from the perspective of the generalized
network formulation. The latter has recently been introduced
for systematically dealing, in an efficient and rigorous manner,
with electromagnetic field representations and computations
in complex structures. The approach is based on the topolog-
ical partitioning of the complex structure into several subdo-
mains joined together by interfaces. The suggested framework
accommodates the use of different analytical/numerical meth-
ods (hybridization), the choice of alternative Green’s func-
tions and the selection of appropriate field quantities at the
boundary between different regions.
By using the generalized network formulation in the step dis-
continuity example we note that it is possible to select alter-
native Green’s functions with improved convergence proper-
ties with respect to those commonly used. In addition, a new
canonical representation of the step discontinuity is derived
and better insight is obtained on the relationship between in-
tegral equation formulations and mode-matching techniques
for the analysis of step discontinuities.

I. INTRODUCTION

Waveguide step discontinuities are the basic building
blocks for the numerical analysis of complex waveguide
components. The current trend of designing such com-
ponents with very high performance, possibly also taking
into account manufacturability issues, demands the use of
computer-intensive optimization programs. When using
such codes for design purposes, the full-wave analysis of basic
discontinuities is performed several thousand of times, and
it is therefore necessary to develop very efficient routines
for this task. Not surprisingly, step discontinuity problems
have received considerable attention in the past (see e.g. [1,
chap. 5], [2]). Due to the separability of the wave equation
in the waveguide subsections [3], essentially two types of ap-
proaches have been developed: one based on mode-matching
at the step discontinuity and the other based on an integral
equation formulation.

Recently, a general architecture has been proposed [4], [5],
[6], [7], [8] for the systematic electromagnetic field computa-
tion in complex structures. This approach is based on the
topological partitioning of the complex structure into sev-
eral subdomains joined together by interfaces. The basic
concept is to describe in a separate manner the topologi-
cal relationship (how the subdomains are connected to each
other) and the physical relationships. Apart from accommo-

dating the use of different analytical/numerical methods (hy-
bridization), this approach also deals in a systematic manner
with a given problem, thus providing new insights also for
rather well-known problems. In particular, in this study, we
derive by this approach both the mode-matching and the in-
tegral equation formulations; in both cases we are also able
to introduce some novelties which yield improvements in the
numerical efficiency and in the physical understanding.

Integral equation techniques have permitted introduction
of basis functions which include the edge condition [9], [10]
and of the admittance matrix formulation [11], [12]. In these
cases, however, the choice of the pertinent Green’s function
in the waveguide subregions was conventional, corresponding
to an eigenfunction expansion in the transverse direction and
waves propagating (and reflected) in the longitudinal direc-
tion. Accordingly, slowly convergent sums were obtained for
steps with significantly different aspect ratios. In this paper
we present an alternative Green’s function expression which
overcomes this problem and allows us to use rapidly conver-
gent sums also for fairly high aspect ratios. The theory and
numerical results for this case are briefly summarized in §II.

Mode-matching considers two different field expansions at
the step itself, i.e. in a region of zero volume; in this case
mode coupling arises at the step discontinuity and one seeks
a description of the step discontinuities. It has been found
that, although several alternatives are available, a descrip-
tion of the type employed in [13], [14] is necessary in order to
obtain meaningful and accurate results. In this approach the
independent field quantities are the electric field in the wave-
guide with the smaller cross-section and the magnetic field
in the waveguide with the larger cross-section. This fact has
been recently explained in [15] but no multimodal equivalent
circuits have been provided so far. In fact, the only rigorous
full-wave multi-mode frequency-independent equivalent cir-
cuit published for the step discontinuity [13], [14] makes use
of controlled sources. Here, in section § III, by considering
the step discontinuity as a connection network, we introduce
a new canonical network based solely on transformers.

Finally, in section § IV, we discuss the relationship be-
tween mode-matching techniques and the integral equation
approach. It is shown that the integral equation technique
is a more general approach. In particular, when selecting a
particular type of Green’s function and the same number of
modal expansion terms, the integral equation technique and
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Fig. 1. Step discontinuity segmentation: a subdivision in two regions
of space (typically used in admittance formulations). The first and
last reference planes (dotted vertical lines) indicate the location
for the “accessible” field variables.

the mode-matching approach provide the same results.

II. USE OF ALTERNATIVE GREEN’S FUNCTIONS IN
INTEGRAL EQUATION FORMULATIONS

We start with subdividing our geometry, i.e. the wave-
guide step discontinuity, into a number of subdomains (see
Fig. 1) which may be of different types, and which are joined
together across interfaces. It is apparent that several differ-
ent topological alternatives are available: we will not inves-
tigate these alternatives in this paper. In this section we
consider a subdivision into two regions of space, see Fig. 1,
which leads to the integral equation (admittance) formula-
tion.

A. Bvaluation of the admittance elements

Let us consider the waveguide step discontinuity illus-
trated in Fig. 2. Essentially, by applying the equivalence
theorem, we place on the discontinuity section a p.e.c. with
equivalent magnetic currents; we then evaluate the magnetic
field generated on both sides and impose the continuity of its
tangential components. Typically, a Galerkin discretization
procedure is adopted and the modes of the smaller waveguide
are chosen as the basis function set. Consequently, most of
the numerical effort is devoted to computing the elements of
the admittance matrix yflp in region B of Fig. 1, representing
the magnetic field tested by the n-th weighting function as
generated by the p-th electric field basis function. Usually,
for their evaluation, an eigenfunction expansion in the y di-
rection is chosen, providing the following representation of
the Green’s function

. cos(kamz<) cos(kam (c—z
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Where k2, = k3 — (%)2 — (%)2 This choice, however,
generates the problem of “relative convergence” [16], [17],
i.e. the number of terms to be used in the Green’s function
expansion depends on the ratio b2 /bi. The larger this aspect
ratio, the larger is the number of terms to be considered for
the Green’s function representation.

The problem of relative convergence can be overcome by
considering an alternative Green’s function representation
which emphasizes wave propagation (and reflection) in the
y direction and modal expansion in the z direction. In this
case the Green’s function takes the form
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a bo
ferent Green’s function representations in the evaluation of

Fig. 2. Geometry of a E-plane step discontinuity between two rectan-
gular waveguides of width @ in the x direction. The computational
domain lies between the two dotted vertical lines.

the admittance terms, we get the following expressions with
different convergent properties:
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A.1 Static part extraction

In both expression (3) and (4) we need to evaluate the
sums in order to compute the admittance terms. It is well
known that, for wide-band evaluation, a different arrange-
ment of these sums is often convenient. In fact, denoting by
S one of the above sums evaluated at a certain given fre-
quency, we can write the generic admittance term, Y, eval-
uated at a different frequency, as given by Y = S+ (D — S);
here D represents the sum evaluated a the frequency of in-
terest. It is noted that the elements appearing in the sum
(D — S) converge very rapidly. This is a well known tech-
nique, generally applied with S representing a static term
and D the dynamic contribution. It is noted that this useful
device can be applied in the evaluation of both expressions
(3) and (4).

B. A numerical ezample

As an example, in Fig. 3 we show the convergence behavior
of one element of the admittance matrix with respect to m,
i.e. with respect to the number of terms used to represent
the Green’s functions in (1) and (2). From the figure it
is apparent that a significant advantage is obtained when
considering the proposed alternative representation instead
of the usual Green'’s function expression.

Similarly, in Fig. 4 we illustrate the convergence behavior
for the same case, but including the static part extraction.
Clearly, this accelerates the rate of convergence. Thus, using
this device and the appropriate alternative Green’s function
selection, convergence is achieved with just a few terms.
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Fig. 3. Convergence behavior of the element n = 0,p = 0 of the ad-
mittance admittance matrix. The waveguide width is a = 19mm
and m is the number of terms considered in the sum in eq. (3) and
(4). It is apparent that the usual Green’s function, GY | converges
relatively slowly and with a strong dependence on the geometrical
ratio by /by. On the contrary, the alternative Green’s function GZ,
which emphasize propagation and reflection in the 7 direction and
modal expansion in the z direction, converges rapidly.
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Fig. 4. As in Fig. 3 but with static-part extraction.

I1I. THE STEP DISCONTINUITY AS A CONNECTION
NETWORK (MODE-MATCHING)

Let us consider a partioning of the step discontinuity into
two regions of space plus a connection network, see Fig. 5;
this is a subdivision which leads to a mode-matching for-
mulation, based on the field representation problem arising
at the step discontinuity [18]. In order to investigate this
problem it is convenient to refer to the bifurcation shown in
Fig. 6 where three different subdomains are joined together.
In particular, there is an interface which connects subdomain
1 to subdomain 3, and an interface connecting subdomain 2
to subdomain 3. In the following, for brevity, we assume that
the electric (magnetic) fields at the interfaces are expanded

Fig. 5. Step discontinuity segmentation: a subdivision into three dif-
ferent regions (the central one being of zero volume, i.e. a connec-
tion network) as generally used in mode-matching formulations.

Fig. 6. The bifurcation problem: three regions of space connected at

an interface.
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Fig. 7. A canonical network for the bifurcation: with V1, Vg and Ig

chosen as independent field quantities.

in terms of suitable basis functions and we denote by V; (I;)
the vector containing the electric (magnetic) field expansion
coefficients relative to region 7.

It has been shown elsewhere [19] that the connection net-
work for this interface can be obtained by taking Vi1, Va2 and
I3 as independent variables leading to the canonical network
representation in Fig. 7. The other choice of independent
variables is I1,I2 and V3 which leads to a similar canonical
network. Both representations are equally valid in order to
describe the connection network relative to a bifurcation.

However, in the case of the step discontinuity, region 1
is filled by a p.e.c., represented by a short-circuit. Thus
we need to impose the condition Vi = 0. The equivalent
network is now the one in Fig. 7 with the ports pertaining
to region 1 short-circuited.

It is useful to note that the above canonical network is
frequency independent, satisfies the Tellegen theorem and
admits a scattering representation with the following prop-
erties: symmetry, ST = S, orthogonality, STS = I and uni-
tary, i.e. SST = I, where the 1 denotes the hermitian con-
jugate matrix, 1" denotes the transposed matrix and I is the
identity matrix.

Also note that the above discussion is valid in general, for
any choice of basis functions in regions 2 and 3. In prac-
tice, the most common choice of basis functions is the use of
the modal eigenfunctions at both sides of the discontinuity;
moreover it is common to place the reference planes at a cer-
tain distance from the discontinuity itself. We have therefore
a certain number of modes which propagate from the discon-
tinuity itself to the reference planes and are represented by
transmission lines; by contrast the modes well below cut-off
provide a localized contribution only at the discontinuity it-
self and can be represented by lumped, frequency-dependent
reactances. It is also noted that the model proposed in this
contribution, similarly to the model proposed in [13], [14]
can be easily implemented in standard circuit simulators.
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Fig. 8. Convergence for the scattering parameter when considering
a n modes in the smaller waveguide and m terms for the Green’s
function, or m modes in the larger waveguide. In the integral
equation approach we can select two different types of Green’s
function: the standard one (here denoted by GY) and the one
here introduced G?. It is noted that the mode matching approach
provides the same results of the integral equation approach when
GY is used as Green function.

A. Some numerical Results

In Fig. 8 we have plotted the convergence of the scattering
parameter for a given step discontinuity when considering n
modes in the smaller waveguide and m modes in the larger
waveguide. It has been observed in [15] that m should be
larger than n; it is also known that their ratio should be ap-
proximately equal to b2/b1. This is a useful criteria for fairly
simple geometries; however, for other types of step discon-
tinuities (e.g. the discontinuity between a small rectangular
waveguide and a fairly large elliptical waveguide, as in [20])
it is difficult to select “a priori” the value of m.

IV. RELATION BETWEEN THE INTEGRAL EQUATION
APPROACH AND MODE-MATCHING

From the previous two sections it is apparent that the
integral equation approach is more general than the mode-
matching formulation. While in the integral equation ap-
proach we can choose between alternative Green’s functions,
the latter possibility is not present in mode-matching.

If we select the Green’s function in eq. (1) and the same
number of modal expansion terms m, then the integral equa-
tion technique and the mode-matching approach provide the
same results (see Fig. 8. However, it has been noted that,
for large aspect ratios, this choice is not the most convenient
one. Moreover, while when considering the integral equa-
tion (Green’s functions) it is straightforward to separate the
static and dynamic contributions, as shown in § TI-A.1, this
does not seem to be the case for the mode-matching.

On the other hand, the mode-matching formulation pro-
vides a canonical, frequency-independent, equivalent circuit
suitable for implementation in circuit simulators.

V. CONCLUSIONS

By applying some of the concepts developed for a gener-
alized network formulation of EM field computation in com-
plex structures we have found some new results also for fairly
well-known problems such as the step discontinuity.

In particular, we have found that the systematic use of
alternative Green’s functions can significantly improve the

convergence properties of modal sums. We have also found
a canonical network representation for the step discontinuity
and discussed the relationship between the integral equation
approach and the mode-matching technique.
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